星音号汇集了各类原创游戏攻略,包括心得秘籍、游戏设置、游戏技巧、攻略问答、攻略宝典等,为游戏玩家提供丰富的攻略资源。

【OpenIM转载】万亿级调用系统:微信序列号生成器架构设计及演变

2025-07-16 03:03 分类:程序介绍 阅读:
 

接下来,星音号将带你认识并了解序列号生成器,希望可以给你带来一些启示。

【OpenIM转载】万亿级调用系统:微信序列号生成器架构设计及演变

【OpenIM转载】万亿级调用系统:微信序列号生成器架构设计及演变

而在这同步机制的背后,需要一个高可用、高可靠的序列号生成器来产生同步数据用的版本号。这个序列号生成器我们称之为seqsvr,目前已经发展为一个每天万亿级调用的重量级系统,其中每次申请序列号平时调用耗时1ms,99.9%的调用耗时小于3ms,服务部署于数百台4核CPU服务器上。 本文会重点介绍seqsvr的架构核心思想,以及seqsvr随着业务量快速上涨所做的架构演变。

从seqsvr申请的、用作数据版本号的sequence,具有两种基本的性质:

举个例子,小明当前申请的sequence为100,那么他下一次申请的sequence,可能为101,也可能是110,总之一定大于之前申请的100。而小红呢,她的sequence与小明的sequence是独立开的,假如她当前申请到的sequence为50,然后期间不管小明申请多少次sequence怎么折腾,都不会影响到她下一次申请到的值(很可能是51)。

预分配中间层

任何一件看起来很简单的事,在海量的访问量下都会变得不简单。前文提到,seqsvr需要保证分配出去的sequence递增(数据可靠),还需要满足海量的访问量(每天接近万亿级别的访问)。满足数据可靠的话,我们很容易想到把数据持久化到硬盘,但是按照目前每秒千万级的访问量(~10^7 QPS),基本没有任何硬盘系统能扛住。

后台架构设计很多时候是一门关于权衡的哲学,针对不同的场景去考虑能不能降低某方面的要求,以换取其它方面的提升。仔细考虑我们的需求,我们只要求递增,并没有要求连续,也就是说出现一大段跳跃是允许的(例如分配出的sequence序列:1,2,3,10,100,101)。于是我们实现了一个简单优雅的策略:

请求带来的硬盘IO问题解决了,可以支持服务平稳运行,但该模型还是存在一个问题:重启时要读取大量的max_seq数据加载到内存中。

我们可以简单计算下,以目前uid(用户唯一ID)上限2^32个、一个max_seq 8bytes的空间,数据大小一共为32GB,从硬盘加载需要不少时间。另一方面,出于数据可靠性的考虑,必然需要一个可靠存储系统来保存max_seq数据,重启时通过网络从该可靠存储系统加载数据。如果max_seq数据过大的话,会导致重启时在数据传输花费大量时间,造成一段时间不可服务。

为了解决这个问题,我们引入号段Section的概念,uid相邻的一段用户属于一个号段,而同个号段内的用户共享一个max_seq,这样大幅减少了max_seq数据的大小,同时也降低了IO次数。

目前seqsvr一个Section包含10万个uid,max_seq数据只有300+KB,为我们实现从可靠存储系统读取max_seq数据重启打下基础。

工程实现

工程实现在上面两个策略上做了一些调整,主要是出于数据可靠性及灾难隔离考虑

接下来我们会介绍seqsvr的容灾架构。我们知道,后台系统绝大部分情况下并没有一种唯一的、完美的解决方案,同样的需求在不同的环境背景下甚至有可能演化出两种截然不同的架构。既然架构是多变的,那纯粹讲架构的意义并不是特别大,期间也会讲下seqsvr容灾设计时的一些思考和权衡,希望对大家有所帮助。

seqsvr的容灾模型在五年中进行过一次比较大的重构,提升了可用性、机器利用率等方面。其中不管是重构前还是重构后的架构,seqsvr一直遵循着两条架构设计原则:

那么,seqsvr最核心的点是什么呢?每个uid的sequence申请要递增不回退。这里我们发现,如果seqsvr满足这么一个约束:任意时刻任意uid有且仅有一台AllocSvr提供服务,就可以比较容易地实现sequence递增不回退的要求。

但也由于这个约束,多台AllocSvr同时服务同一个号段的多主机模型在这里就不适用了。我们只能采用单点服务的模式,当某台AllocSvr发生服务不可用时,将该机服务的uid段切换到其它机器来实现容灾。这里需要引入一个仲裁服务,探测AllocSvr的服务状态,决定每个uid段由哪台AllocSvr加载。出于可靠性的考虑,仲裁模块并不直接操作AllocSvr,而是将加载配置写到StoreSvr持久化,然后AllocSvr定期访问StoreSvr读取最新的加载配置,决定自己的加载状态

同时,为了避免失联AllocSvr提供错误的服务,返回脏数据,AllocSvr需要跟StoreSvr保持租约。这个租约机制由以下两个条件组成:

到此讲了AllocSvr容灾切换的基本原理,接下来会介绍整个seqsvr架构容灾架构的演变

最初版本的seqsvr采用了主机+冷备机容灾模式:全量的uid空间均匀分成N个Section,连续的若干个Section组成了一个Set,每个Set都有一主一备两台AllocSvr。正常情况下只有主机提供服务;在主机出故障时,仲裁服务切换主备,原来的主机下线变成备机,原备机变成主机后加载uid号段提供服务。

可能看到前文的叙述,有些同学已经想到这种容灾架构。一主机一备机的模型设计简单,并且具有不错的可用性——毕竟主备两台机器同时不可用的概率极低,相信很多后台系统也采用了类似的容灾策略。

前两点好懂,人力、机器都不如时间宝贵。而第三点比较有意思,下面展开讲下

但在seqsvr里,AllocSvr是预分配中间层,并不是无状态的。而前面我们提到,AllocSvr加载哪些uid号段,是由保存在StoreSvr的加载配置决定的。那么这时候就尴尬了,业务想要申请某个uid的sequence,Client端其实并不清楚具体去哪台AllocSvr访问,client配置文件只会跟它说“AllocSvrA、AllocSvrB…这堆机器的某一台会有你想要的sequence”。换句话讲,原来负责提供服务的AllocSvrA故障,仲裁服务决定由AllocSvrC来替代AllocSvrA提供服务,Client要如何获知这个路由信息的变更?

这时候假如我们的AllocSvr采用了主备容灾模型的话,事情就变得简单多了。我们可以在client配置文件里写:对于某个uid号段,要么是AllocSvrA加载,要么是AllocSvrB加载。Client端发起请求时,尽管Client端并不清楚AllocSvrA和AllocSvrB哪一台真正加载了目标uid号段,但是Client端可以先尝试给其中任意一台AllocSvr发请求,就算这次请求了错误的AllocSvr,那么就知道另外一台是正确的AllocSvr,再发起一次请求即可。

也就是说,对于主备容灾模型,最多也只会浪费一次的试探请求来确定AllocSvr的服务状态,额外消耗少,编码也简单。可是,如果Svr端采用了其它复杂的容灾策略,那么基于静态配置的框架就很难去确定Svr端的服务状态:Svr发生状态变更,Client端无法确定应该向哪台Svr发起请求。这也是为什么一开始选择了主备容灾的原因之一。

在我们的实际运营中,容灾1.0架构存在两个重大的不足:

在主备容灾中,Client和AllocSvr需要使用完全一致的配置文件。变更这个配置文件的时候,由于无法实现在同一时间更新给所有的Client和AllocSvr,因此需要非常复杂的人工操作来保证变更的正确性(包括需要使用iptables来做请求转发,具体的详情这里不做展开)。

对于第二个问题,常见的方法是用一致性Hash算法替代主备,一个Set有多台机器,过载机器的请求被分摊到多台机器,容灾效果会更好。在seqsvr中使用类似一致性Hash的容灾策略也是可行的,只要Client端与仲裁服务都使用完全一样的一致性Hash算法,这样Client端可以启发式地去尝试,直到找到正确的AllocSvr。

例如对于某个uid,仲裁服务会优先把它分配到AllocSvrA,如果AllocSvrA挂掉则分配到AllocSvrB,再不行分配到AllocSvrC。那么Client在访问AllocSvr时,按照AllocSvrA -> AllocSvrB -> AllocSvrC的顺序去访问,也能实现容灾的目的。但这种方法仍然没有克服前面主备容灾面临的配置文件变更的问题,运营起来也很麻烦。

最后我们另辟蹊径,采用了一种不同的思路:既然Client端与AllocSvr存在路由状态不一致的问题,那么让AllocSvr把当前的路由状态传递给Client端,打破之前只能根据本地Client配置文件做路由决策的限制,从根本上解决这个问题。

所以在2.0架构中,我们把AllocSvr的路由状态嵌入到Client请求sequence的响应包中,在不带来额外的资源消耗的情况下,实现了Client端与AllocSvr之间的路由状态一致。具体实现方案如下:

seqsvr所有模块使用了统一的路由表,描述了uid号段到AllocSvr的全映射。这份路由表由仲裁服务根据AllocSvr的服务状态生成,写到StoreSvr中,由AllocSvr当作租约读出,最后在业务返回包里旁路给Client端。

把路由表嵌入到取sequence的请求响应包中,那么会引入一个类似“先有鸡还是先有蛋”的哲学命题:没有路由表,怎么知道去哪台AllocSvr取路由表?另外,取sequence是一个超高频的请求,如何避免嵌入路由表带来的带宽消耗?

这里通过在Client端内存缓存路由表以及路由版本号来解决,请求步骤如下:

基于的请求步骤,在本地路由表失效的时候,使用少量的重试便可以拉到正确的路由,正常提供服务。

我们的官网及论坛:   OpenIM官网

                                     OpenIM官方论坛

access数据库软件

星际争霸地图下载

相关推荐

返回顶部